Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Medicine ; 102(6), 2023.
Article in English | Europe PMC | ID: covidwho-2238407

ABSTRACT

The frequency of acute kidney injury (AKI) in COVID-19 patients can be varied and related to worse outcomes in the disease population. AKI is common among hospitalized patients with COVID-19, particularly the ones needing critical care. This study was conducted in order to determine the outcomes of hospitalized patients with prolonged hospital stays who suffered from COVID-19 associated AKI. It was conducted as a multi-centered, retrospective, cohort study, and including all patients who were diagnosed on COVID-19 PCR. End-stage renal disease patients on hemodialysis were excluded. The cohort included 1069 patients, with 68% males, mean age of 56.21 years, and majority within 50 to 75 years age group (60%). Mean disease onset was 14.43 ± 7.44 days and hospital stay was 7.01 ± 5.78 days. About 62% of patients stayed in intensive care and 18% of them were on invasive ventilation. The mortality rate was 27%. Frequency of AKI was 42%, around 14% of them were resolving during hospital stay and other 28% worsened. The mortality rate was significantly higher with AKI (OR: 4.7, P < .001). Alongside AKI, concomitant liver dysfunction was also significantly contributing to mortality (OR: 2.5), apart from ICU stay (OR: 2.9), invasive ventilation (OR: 9.2), and renal replacement therapy (OR: 2.4). Certain laboratory markers were associated with AKI throughout in-hospital stay.

2.
Medicine (Baltimore) ; 102(6): e32919, 2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2227150

ABSTRACT

The frequency of acute kidney injury (AKI) in COVID-19 patients can be varied and related to worse outcomes in the disease population. AKI is common among hospitalized patients with COVID-19, particularly the ones needing critical care. This study was conducted in order to determine the outcomes of hospitalized patients with prolonged hospital stays who suffered from COVID-19 associated AKI. It was conducted as a multi-centered, retrospective, cohort study, and including all patients who were diagnosed on COVID-19 PCR. End-stage renal disease patients on hemodialysis were excluded. The cohort included 1069 patients, with 68% males, mean age of 56.21 years, and majority within 50 to 75 years age group (60%). Mean disease onset was 14.43 ± 7.44 days and hospital stay was 7.01 ± 5.78 days. About 62% of patients stayed in intensive care and 18% of them were on invasive ventilation. The mortality rate was 27%. Frequency of AKI was 42%, around 14% of them were resolving during hospital stay and other 28% worsened. The mortality rate was significantly higher with AKI (OR: 4.7, P < .001). Alongside AKI, concomitant liver dysfunction was also significantly contributing to mortality (OR: 2.5), apart from ICU stay (OR: 2.9), invasive ventilation (OR: 9.2), and renal replacement therapy (OR: 2.4). Certain laboratory markers were associated with AKI throughout in-hospital stay.


Subject(s)
Acute Kidney Injury , COVID-19 , Male , Humans , Middle Aged , Female , COVID-19/complications , COVID-19/therapy , Length of Stay , Retrospective Studies , Cohort Studies , Pakistan/epidemiology , Intensive Care Units , Hospital Mortality , Biomarkers , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Acute Kidney Injury/diagnosis , Risk Factors
3.
Front Med (Lausanne) ; 9: 951556, 2022.
Article in English | MEDLINE | ID: covidwho-2080175

ABSTRACT

Introduction and objectives: In patients with coronavirus disease 2019 (COVID-19), several abnormal hematological biomarkers have been reported. The current study aimed to find out the association of neutrophil to lymphocyte ratio (NLR) and derived NLR (dNLR) with COVID-19. The objective was to compare the accuracy of both of these markers in predicting the severity of the disease. Materials and methods: The study was conducted in a single-center having patients with COVID-19 with a considerable hospital stay. NLR is easily calculated by dividing the absolute neutrophil count (ANC) with the absolute lymphocyte count (ALC) {ANC/ALC}, while dNLR is calculated by ANC divided by total leukocyte count minus ANC {ANC/(WBC-ANC)}. Medians and interquartile ranges (IQR) were represented by box plots. Multivariable logistic regression was performed obtaining an odds ratio (OR), 95% CI, and further adjusted to discover the independent predictors and risk factors associated with elevated NLR and dNLR. Results: A total of 1,000 patients with COVID-19 were included. The baseline NLR and dNLR were 5.00 (2.91-10.46) and 4.00 (2.33-6.14), respectively. A cut-off value of 4.23 for NLR and 2.63 for dNLR were set by receiver operating characteristic (ROC) analysis. Significant associations of NLR were obtained by binary logistic regression for dependent outcome variables as ICU stay (p < 0.001), death (p < 0.001), and invasive ventilation (p < 0.001) while that of dNLR with ICU stay (p = 0.002), death (p < 0.001), and invasive ventilation (p = 0.002) on multivariate analysis when adjusted for age, gender, and a wave of pandemics. Moreover, the indices were found correlating with other inflammatory markers such as C-reactive protein (CRP), D-dimer, and procalcitonin (PCT). Conclusion: Both markers are equally reliable and sensitive for predicting in-hospital outcomes of patients with COVID-19. Early detection and predictive analysis of these markers can allow physicians to risk assessment and prompt management of these patients.

4.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1980224

ABSTRACT

Introduction and objectives In patients with coronavirus disease 2019 (COVID-19), several abnormal hematological biomarkers have been reported. The current study aimed to find out the association of neutrophil to lymphocyte ratio (NLR) and derived NLR (dNLR) with COVID-19. The objective was to compare the accuracy of both of these markers in predicting the severity of the disease. Materials and methods The study was conducted in a single-center having patients with COVID-19 with a considerable hospital stay. NLR is easily calculated by dividing the absolute neutrophil count (ANC) with the absolute lymphocyte count (ALC) {ANC/ALC}, while dNLR is calculated by ANC divided by total leukocyte count minus ANC {ANC/(WBC-ANC)}. Medians and interquartile ranges (IQR) were represented by box plots. Multivariable logistic regression was performed obtaining an odds ratio (OR), 95% CI, and further adjusted to discover the independent predictors and risk factors associated with elevated NLR and dNLR. Results A total of 1,000 patients with COVID-19 were included. The baseline NLR and dNLR were 5.00 (2.91–10.46) and 4.00 (2.33–6.14), respectively. A cut-off value of 4.23 for NLR and 2.63 for dNLR were set by receiver operating characteristic (ROC) analysis. Significant associations of NLR were obtained by binary logistic regression for dependent outcome variables as ICU stay (p < 0.001), death (p < 0.001), and invasive ventilation (p < 0.001) while that of dNLR with ICU stay (p = 0.002), death (p < 0.001), and invasive ventilation (p = 0.002) on multivariate analysis when adjusted for age, gender, and a wave of pandemics. Moreover, the indices were found correlating with other inflammatory markers such as C-reactive protein (CRP), D-dimer, and procalcitonin (PCT). Conclusion Both markers are equally reliable and sensitive for predicting in-hospital outcomes of patients with COVID-19. Early detection and predictive analysis of these markers can allow physicians to risk assessment and prompt management of these patients.

5.
Saudi J Kidney Dis Transpl ; 32(2): 377-386, 2021.
Article in English | MEDLINE | ID: covidwho-1622688

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a global pandemic, also affecting Pakistan with its first case reported on February 26, 2020. Since then, it has been declared a pandemic by the World Health Organization. Our study aimed to evaluate the renal derangements associated with COVID-19 infection in our population. A retrospective, observational study was conducted to include all the admitted patients having COVID-19 positive, and evaluated those for derangements of renal function (n = 362). Out of the 362 patients, 229were admitted in the ward, 133 were in intensive care unit (ICU), 258 of them recovered, while 104 deaths reported. At admission, the renal profile was deranged in almost one-half of ICU admissions and mortalities which increased to two-third during the hospital stay, with around 80% of deaths reported with increased urea and creatinine levels. Among the deceased patients, around one-third of the mortalities developed renal profile derangements during the hospital stay although they were admitted with a normal renal profile. An estimated glomerular filtration rate showed a mean increase of 13.37 mL/min/1.73 m2 during the hospital stay of surviving patients, while a decline of 19.92 in nonsurviving patients. A hazard ratio of 3.293 (P <0.001) for admitting serum urea and 3.795 (P = 0.009) at discharge and for serum creatinine at 5.392 (P <0.001) on discharge was associated significantly with mortality. Kaplan-Meier plot showed a significant decline in days of survival with deranged urea and creatinine (P <0.001). The deranged renal function in COVID-19 patients is associated with an increased number of ICU admissions as well as mortalities.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , Hospital Mortality , Intensive Care Units/statistics & numerical data , SARS-CoV-2 , Acute Kidney Injury/mortality , Acute Kidney Injury/therapy , COVID-19/mortality , COVID-19 Nucleic Acid Testing , Creatinine/blood , Glomerular Filtration Rate , Humans , Incidence , Kidney Function Tests , Pakistan/epidemiology , Renal Dialysis , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Tertiary Healthcare , Urea/blood
6.
J Community Hosp Intern Med Perspect ; 10(6): 514-520, 2020 Oct 29.
Article in English | MEDLINE | ID: covidwho-900307

ABSTRACT

BACKGROUND AND OBJECTIVES: COVID-19 is a global pandemic. In our study, we aimed to utilize the hematological parameters in predicting the prognosis and mortality in COVID-19 patients. MATERIALS AND METHODS: A retrospective, observational study was conducted to include all the admitted patients (n = 191) having COVID-19 Polymerase chain reaction (PCR) positive, and evaluated those for prognosis and disease outcome by utilizing several biochemical and hematological markers. RESULTS: Amongst the patients admitted in the ward versus in the intensive care unit (ICU), there were significant differences in mean hemoglobin (P = 0.003), total leukocyte count (P = 0.001), absolute neutrophil and lymphocyte counts (P < 0.001), absolute monocyte count (P = 0.019), Neutrophil-to-Lymphocyte ratio (NLR) and Lymphocyte-to-Monocyte ratio (LMR) (P < 0.001), Platelet-to-Lymphocyte ratio (PLR) and Lymphocyte-to C-reactive protein ratio (LCR) (P = 0.002), and C-reactive protein (CRP) levels (P < 0.001). Amongst the deceased patients, there was significant leukocytosis (P = 0.008), neutrophilia and lymphopenia (P < 0.001), increased NLR (P = 0.001), decreased LMR (P < 0.001), increased PLR (p = 0.017), decreased LCR (p = 0.003), and elevated CRP level (P < 0.001). A receiver operating characteristic curve obtained for the above parameters showed NLR (AUC: 0.841, PPV: 83.6%) and PLR (AUC: 0.703, PPV: 81.8%) for ICU patients, while NLR (AUC: 0.860, PPV: 91.1%) and PLR (AUC: 0.677, PPV: 87.5%) for the deceased patients had significant accuracy for predicting the disease severity of COVID-19 in comparison to survivors. CONCLUSION: The inflammatory markers and hematological indices are a good guide for predicting the severity and disease outcome of coronavirus disease. NLR and PLR are elevated in severe disease while LMR and LCR are inversely correlating with disease severity.

7.
Cureus ; 12(8): e10054, 2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-808939

ABSTRACT

Background and objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. The disease mainly affects the respiratory system of the patient, in particular, the lungs, which leads to patients presenting with acute respiratory distress syndrome and acute respiratory failure, with 5-15% of patients requiring observation in the intensive care unit (ICU) with respiratory support in the form of ventilation. This study was aimed at identifying the role of biochemical markers in the risk stratification of invasive and non-invasive ventilation of hospitalized COVID-19 patients. Materials and methods The study was conducted as a prospective, observational study of all admitted COVID-19 patients. A comparative analysis was performed of the survivors who were on invasive versus (vs) non-invasive ventilation and the non-survivors similarly. After computing the descriptive statistics, a multinomial logistic regression model was applied to obtain an unadjusted odds ratio (OR) at 95% confidence interval (CI), with Hosmer-Lemeshow (HL) goodness-of-fit test used to predict the fitness of the data. Kaplan-Meier survival curves were obtained for each of the laboratory investigations predicting survival along with the intensive care stay and invasive ventilation. A log-rank test was carried out to compare the survival distributions. Results A total of 373 included patients in the study had a mean age of 52.78 ± 15.76 years with females younger than males, and indifference amongst invasive vs non-invasively ventilated (p=0.821). Females were slightly more prone to invasive ventilation (p=0.097). Overall, 39% of the subjects did not need respiratory support, while 13% were on a ventilator, 16% on bilevel positive airway pressure/continuous positive airway pressure (BiPAP/CPAP), and 31% on supplemental oxygen therapy. Among the laboratory markers, mean hemoglobin was evidently lower in the invasive group, leukocytosis and thrombocytopenia were present in both invasively ventilated and non-surviving patients, while neutrophilia and lymphocytopenia were statistically indifferent among the mode of ventilation. Elevated urea, creatinine, and sodium were also significantly deranged laboratory markers amongst the invasively ventilated group. C-reactive protein (CRP) and lactate dehydrogenase (LDH) were elevated significantly in the invasive group, while serum ferritin was more frequently raised in the non-invasively ventilated group. Procalcitonin (PCT) was significantly associated with invasive ventilation as opposed to the non-invasive group. D-dimer was equally raised in both the groups at admission but significantly elevated in the invasive group at discharge. A multinomial regression model signified D-dimer (OR: 16.301), hypernatremia (OR: 12.738), creatinine (OR: 12.589), urea (OR: 12.576), and LDH (OR: 12.245) most significantly associated with death, while those for invasive ventilation were D-dimer (OR: 8.744), hypernatremia (OR: 4.532), PCT (OR: 3.829), neutrophilia (OR: 3.804), leukocytosis (OR: 3.330), and serum urea (OR: 3.312). Kaplan-Meier curves conclude total leucocyte count (TLC), neutrophils, lymphocytes, urea, creatinine, sodium, CRP, LDH, PCT, and D-dimer all significantly contributing to an early death. Conclusion The most significant marker for mortality was D-dimer, followed by serum sodium, urea/creatinine, LDH, ICU stay, and invasive ventilation.

8.
Cureus ; 12(8): e9575, 2020 Aug 05.
Article in English | MEDLINE | ID: covidwho-723981

ABSTRACT

Background and objectives Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are rapidly spreading, posing a serious threat to the health of people worldwide, resulting in the World Health Organization officially declaring it a pandemic. There are several biochemical markers linked with predicting the severity of coronavirus disease. This study aims to identify the most effective predictive biomarker such as C-reactive protein (CRP), ferritin, lactate dehydrogenase (LDH), procalcitonin (PCT), and D-dimer, among others, in predicting the clinical outcome of the disease. Materials and methods This study was conducted as a retrospective, observational, multi-centric study, including all admitted COVID-19 positive patients only. The disease outcome was followed along with the hospital course of every patient at the time of analysis. Baseline laboratory investigations of all patients were monitored both at admission and discharge. A comparative analysis was done between the survivors (n=263) and non-survivors (n=101). Statistical analysis was conducted using IBM SPSS Statistics for Windows Version 25 (Armonk, NY: IBM Corp.). Results Of 364 patients, 65.7% were in the isolation ward, and 34.3% were in the intensive care unit; 72.3% of patients survived, while 27.7% of patients died. The mean age of the study population was 52.6 ± 15.8 years with female patients significantly younger than male patients (p=0.001) and 50 to 75 years being the most common age group (p=0.121). Among the survivors versus non-survivors of COVID-19, there were significant differences in total leukocyte count (p<0.001), neutrophil count, (p<0.001), lymphocyte count (p<0.001), urea (p<0.001), serum bicarbonate (p=0.001), CRP levels (p<0.001), LDH (p=0.013), and D-dimer (p<0.001) at admission. At discharge, the laboratory values of non-surviving patients showed significant leukocytosis (p<0.001), neutrophilia (p<0.001), lymphocytopenia (p<0.001), decreased monocytes (p<0.001), elevated urea and creatinine (p<0.001), hypernatremia (p<0.001), decreased serum bicarbonate levels (p<0.001), elevated CRP level (p=0.040), LDH (p<0.001), ferritin (p=0.001), and D-dimer (p<0.001). Among the recovered patients, the laboratory investigations at admission were significantly different from those at discharge like increased platelets (p=0.007), lower neutrophil count (p=0.001), higher lymphocyte count (p=0.005), an improved creatinine (p=0.020), higher sodium (p=0.008), increased bicarbonate levels (p<0.001), decreased CRP levels (p<0.001), and a lower LDH (p=0.039). However, the laboratory values of non-surviving patients had shown a lower hemoglobin (p=0.016), increased mean cell volume (p<0.001), significantly increased total leukocyte count (p<0.001), increased urea and creatinine (p<0.001), hypernatremia (p<0.001), increased bicarbonate (p=0.025), elevated D-dimer levels (p=0.043), and elevated PCT (p=0.021) on discharge. Receiver operating characteristic analysis concluded LDH (area under the curve [AUC]: 0.875), D-dimer (AUC: 0.803), and PCT (AUC: 0.769) were superior biomarkers to ferritin (AUC: 0.714) and CRP (AUC: 0.711) in predicting the fatality of COVID-19. Conclusion Inflammatory markers are a useful guide for predicting mortality, and the study results concluded that LDH, PCT, D-dimer, CRP, and ferritin were effective biomarkers.

10.
Cureus ; 12(6): e8712, 2020 Jun 20.
Article in English | MEDLINE | ID: covidwho-635132

ABSTRACT

Background and objective COVID-19 is a highly disseminating viral disease imparted by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), which was declared a global pandemic by the World Health Organization. In our study, we aimed to describe the clinical characteristics of the first 100 hospitalized patients of confirmed COVID-19 in a developing country. Materials and methods The study included all the admitted patients (n = 100) having COVID-19 polymerase chain reaction (PCR) positive, and evaluated clinical profiles and characteristics of the patients linking to disease severity. Results Out of the 100 patients, 67 were in the ward, 33 were in ICU, 78 of them recovered, while 22 deaths reported. The mean age was 52.58 ± 15.68, with most frequent comorbidities are diabetes and hypertension while frequent symptoms are fever and dry cough. Bilateral lower zone patchy infiltrates are frequent chest radiographic findings. Amongst the patients admitted in ICU, there were significant differences in the total leukocyte count (P = 0.001), neutrophils and lymphocytes (P =< 0.001), monocytes (P = 0.027), urea (P =< 0.001), creatinine (P = 0.002), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) increasing with disease severity, lymphocyte-to-monocyte ratio (LMR) and lymphocyte-to-C-reactive protein ratio (LCR) decreasing with mortalities. Gamma-glutamyl transferase (GGT) followed by aspartate aminotransferase (AST) are frequent hepatic derangements, while C-reactive protein (CRP) levels predicting ICU admission with area under the curve (AUC): 0.806, positive predictive value (PPV): 85.1% and lactate dehydrogenase (LDH) predicting mortality with AUC: 0.877, PPV: 97.3%, while NLR (AUC: 0.806, PPV: 95.8%) for mortality and neutrophils (AUC: 0.773, PPV: 87.5%) for ICU patients. Conclusion A number of factors are linked with disease severity and mortality along with dynamic changes of the laboratory investigations during hospital stay affecting prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL